IPsec

Protocols

Internet Security Association and Key Management Protocol (ISAKMP)
A framework for the negotiation and management of security associations between peers (traverses UDP/500)

Internet Key Exchange (IKE)
Responsible for key agreement using asymmetric cryptography

Encapsulating Security Payload (ESP)
Provides data encryption, data integrity, and peer authentication; IP protocol 50

Authentication Header (AH)
Provides data integrity and peer authentication, but not data encryption; IP protocol 51

Encryption Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Length (Bits)</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>Symmetric 56</td>
<td>Weak</td>
</tr>
<tr>
<td>3DES</td>
<td>Symmetric 168</td>
<td>Medium</td>
</tr>
<tr>
<td>AES</td>
<td>Symmetric 128/192/256</td>
<td>Strong</td>
</tr>
<tr>
<td>RSA</td>
<td>Asymmetric 1024+</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Hashing Algorithms

<table>
<thead>
<tr>
<th>Length (Bits)</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5 128</td>
<td>Medium</td>
</tr>
<tr>
<td>SHA-1 160</td>
<td>Strong</td>
</tr>
</tbody>
</table>

IKE Phases

Phase 1
A bidirectional ISAKMP SA is established between peers to provide a secure management channel (IKE in main or aggressive mode)

Phase 1.5 (optional)
Xauth can optionally be implemented to enforce user authentication

Phase 2
Two unidirectional IPsec SAs are established for data transfer using separate keys (IKE quick mode)

Terminology

Data Integrity
Secure hashing (HMAC) is used to ensure data has not been altered in transit

Data Confidentiality
Encryption is used to ensure data cannot be intercepted by a third party

Data Origin Authentication
Authentication of the SA peer

Anti-replay
Sequence numbers are used to detect and discard duplicate packets

Hash Message Authentication Code (HMAC)
A hash of the data and secret key used to provide message authenticity

Diffie-Hellman Exchange
A shared secret key is established over an insecure path using public and private keys

Troubleshooting

- `show crypto isakmp sa`
- `show crypto isakmp policy`
- `show crypto ipsec sa`
- `show crypto ipsec transform-set`
- `debug crypto {isakmp | ipsec}`

IPsec Modes

<table>
<thead>
<tr>
<th>Original Packet</th>
<th>L2</th>
<th>IP</th>
<th>TCP/UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Mode</td>
<td>L2</td>
<td>IP</td>
<td>ESP/AH</td>
</tr>
<tr>
<td>Tunnel Mode</td>
<td>L2</td>
<td>New IP</td>
<td>ESP/AH</td>
</tr>
</tbody>
</table>

Configuration

ISAKMP Policy
```
crypto isakmp policy 10
  encryption aes 256
  hash sha
  authentication pre-share
group 2
lifetime 3600
```

ISAKMP Pre-Shared Key
```
crypto isakmp key 1 MySecretKey address 10.0.0.2
```

IPsec Transform Set
```
crypto ipsec transform-set MyTS esp-aes 256 esp-sha-hmac
mode tunnel
```

IPsec Profile
```
crypto ipsec profile MyProfile
  set transform-set MyTS
```

Virtual Tunnel Interface
```
interface Tunnel0
  ip address 172.16.0.1 255.255.255.252
tunnel source 10.0.0.1
tunnel destination 10.0.0.2
tunnel mode ipsec ipv4
tunnel protection ipsec profile MyProfile
```